We consider a strongly magnetized plasma described by a Vlasov-Poisson system with a large external magnetic field. The finite Larmor radius scaling allows to describe its behaviour at very fine scales. We give a new interpretation of the asymptotic equations obtained by Frénod and Sonnendrücker [
(2001) 1227–1247] when the intensity of the magnetic field goes to infinity. We introduce the so-called polarization drift and show that its contribution is not negligible in the limit,...
The goal of this note is to present the recent results concerning the controllability of the Vlasov-Maxwell system, which are proved in the paper [] by Olivier Glass and the author.
Nous présentons les résultats prouvés dans [, ], qui concernent l’étude asymptotique de l’équation de Vlasov-Poisson dans un régime quasineutre et de champ magnétique intense. Nous insisterons en particulier sur les conséquences de l’anisotropie du problème physique sur l’analyse mathématique.
We consider a strongly magnetized plasma described by a Vlasov-Poisson system with a large external magnetic field. The finite Larmor radius scaling allows to describe its behaviour at very fine scales. We give a new interpretation of the asymptotic equations obtained by Frénod and Sonnendrücker [
(2001) 1227–1247] when the intensity of the magnetic field goes to infinity. We introduce the so-called polarization drift and show that its contribution is not negligible in the limit,...
The aim of this note is to present the results from [11, 12], which deal with the linear Boltzmann equation, set in a bounded domain and in the presence of an external force. A specificity of these works is that the collision operator is allowed to be degenerate in the following two senses: (1) the associated collision kernel may vanish in a large subset of the phase space; (2) we do not assume that it is bounded below by a Maxwellian at infinity in velocity.
We study:
In this paper, we study the quasineutral limit of the isothermal Euler-Poisson equation for ions, in a domain with boundary. This is a follow-up to our previous work [], devoted to no-penetration as well as subsonic outflow boundary conditions. We focus here on the case of supersonic outflow velocities. The structure of the boundary layers and the stabilization mechanism are different.
Download Results (CSV)