The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 18 of 18

Showing per page

Order by Relevance | Title | Year of publication

Irregularities of continuous distributions

Michael Drmota — 1989

Annales de l'institut Fourier

This paper deals with a continuous analogon to irregularities of point distributions. If a continuous fonction x : [ 0 , 1 ] X where X is a compact body, is interpreted as a particle’s movement in time, then the discrepancy measures the difference between the particle’s stay in a proper subset and the volume of the subset. The essential part of this paper is to give lower bounds for the discrepancy in terms of the arc length of x ( t ) , 0 t 1 . Furthermore it is shown that these estimates are the best possible despite of...

The Zeckendorf expansion of polynomial sequences

Michael DrmotaWolfgang Steiner — 2002

Journal de théorie des nombres de Bordeaux

In the first part of the paper we prove that the Zeckendorf sum-of-digits function s z ( n ) and similarly defined functions evaluated on polynomial sequences of positive integers or primes satisfy a central limit theorem. We also prove that the Zeckendorf expansion and the q -ary expansions of integers are asymptotically independent.

The joint distribution of Q -additive functions on polynomials over finite fields

Michael DrmotaGeorg Gutenbrunner — 2005

Journal de Théorie des Nombres de Bordeaux

Let K be a finite field and Q K [ T ] a polynomial of positive degree. A function f on K [ T ] is called (completely) Q -additive if f ( A + B Q ) = f ( A ) + f ( B ) , where A , B K [ T ] and deg ( A ) < deg ( Q ) . We prove that the values ( f 1 ( A ) , ... , f d ( A ) ) are asymptotically equidistributed on the (finite) image set { ( f 1 ( A ) , ... , f d ( A ) ) : A K [ T ] } if Q j are pairwise coprime and f j : K [ T ] K [ T ] are Q j -additive. Furthermore, it is shown that ( g 1 ( A ) , g 2 ( A ) ) are asymptotically independent and Gaussian if g 1 , g 2 : K [ T ] are Q 1 - resp. Q 2 -additive.

Page 1

Download Results (CSV)