The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 74

Showing per page

Order by Relevance | Title | Year of publication

On the weak non-defectivity of veronese embeddings of projective spaces

Edoardo Ballico — 2005

Open Mathematics

Fix integers n, x, k such that n≥3, k>0, x≥4, (n, x)≠(3, 4) and k(n+1)<(nn+x). Here we prove that the order x Veronese embedding ofP n is not weakly (k−1)-defective, i.e. for a general S⊃P n such that #(S) = k+1 the projective space | I 2S (x)| of all degree t hypersurfaces ofP n singular at each point of S has dimension (n/n+x )−1− k(n+1) (proved by Alexander and Hirschowitz) and a general F∈| I 2S (x)| has an ordinary double point at each P∈ S and Sing (F)=S.

On projective degenerations of Veronese spaces

Edoardo Ballico — 1996

Banach Center Publications

Here we give several examples of projective degenerations of subvarieties of t . The more important case considered here is the d-ple Veronese embedding of n ; we will show how to degenerate it to the union of d n n-dimensional linear subspaces of t ; t : = ( n + d ) / ( n ! d ! ) - 1 and the union of scrolls. Other cases considered in this paper are essentially projective bundles over important varieties. The key tool for the degenerations is a general method due to Moishezon. We will give elsewhere several applications to postulation...

Page 1 Next

Download Results (CSV)