Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts

Eszter HorváthBranimir ŠešeljaAndreja Tepavčević — 2013

Open Mathematics

We deal with rectangular m×n boards of square cells, using the cut technics of the height function. We investigate combinatorial properties of this function, and in particular we give lower and upper bounds for the number of essentially different cuts. This number turns out to be the cardinality of the height function’s range, in case the height function has maximally many rectangular islands.

The Słupecki criterion by duality

Eszter K. Horváth — 2001

Discussiones Mathematicae - General Algebra and Applications

A method is presented for proving primality and functional completeness theorems, which makes use of the operation-relation duality. By the result of Sierpiński, we have to investigate relations generated by the two-element subsets of A k only. We show how the method applies for proving Słupecki’s classical theorem by generating diagonal relations from each pair of k-tuples.

A scheme for congruence semidistributivity

Ivan ChajdaEszter K. Horváth — 2003

Discussiones Mathematicae - General Algebra and Applications

A diagrammatic statement is developed for the generalized semidistributive law in case of single algebras assuming that their congruences are permutable. Without permutable congruences, a diagrammatic statement is developed for the ∧-semidistributive law.

Invariance groups of finite functions and orbit equivalence of permutation groups

Which subgroups of the symmetric group Sn arise as invariance groups of n-variable functions defined on a k-element domain? It appears that the higher the difference n-k, the more difficult it is to answer this question. For k ≤ n, the answer is easy: all subgroups of Sn are invariance groups. We give a complete answer in the cases k = n-1 and k = n-2, and we also give a partial answer in the general case: we describe invariance groups when n is much larger than n-k. The proof utilizes Galois connections...

Page 1

Download Results (CSV)