In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators  and . More precisely, we prove that  and  map  with , boundedly and continuously. In addition, we show that the discrete versions  and  map  boundedly and map  continuously. Specially, we obtain the sharp variation inequalities of  and , that is, 
if , where  is the total variation of  on  and  is the set of all functions  satisfying .
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                    
                       
We study the regularity properties of bilinear maximal operator. Some new bounds and continuity for the above operators are established on the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces. In addition, the quasicontinuity and approximate differentiability of the bilinear maximal function are also obtained.
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                    
                       
In this paper, we investigate the finite-time stochastic synchronization problem of two chaotic systems with noise perturbation. We propose new adaptive controllers, with which we can synchronize two chaotic systems in finite time. Sufficient conditions for the finite-time stochastic synchronization are derived based on the finite-time stability theory of stochastic differential equations. Finally, some numerical examples are examined to demonstrate the effectiveness and feasibility of the theoretical...
                    
                 
                
                    
                
            
        
            
            
            
            
            
                
            
                
            
                
            
                
            
                
                    
                
            
                
            
                
             
            
            
                
            
            
            
                
                    
                
            
            
            
            
                
            
            
             
            
                
            
            
            
                
                
                
                
                    
                
            
        
        
        
            
                Download Results (CSV)