The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 16 of 16

Showing per page

Order by Relevance | Title | Year of publication

Groups with nearly modular subgroup lattice

Francesco de GiovanniCarmela Musella — 2001

Colloquium Mathematicae

A subgroup H of a group G is nearly normal if it has finite index in its normal closure H G . A relevant theorem of B. H. Neumann states that groups in which every subgroup is nearly normal are precisely those with finite commutator subgroup. We shall say that a subgroup H of a group G is nearly modular if H has finite index in a modular element of the lattice of subgroups of G. Thus nearly modular subgroups are the natural lattice-theoretic translation of nearly normal subgroups. In this article we...

On maximal subgroups of minimax groups

Silvana FranciosiFrancesco de Giovanni — 1995

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

It is proved that a soluble residually finite minimax group is finite-by-nilpotent if and only if it has only finitely many maximal subgroups which are not normal.

On automorphisms fixing subnormal subgroups of soluble groups

Silvana FranciosiFrancesco de Giovanni — 1988

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The group A u t s n G of all automorphisms leaving invariant every subnormal subgroup of the group G is studied. In particular it is proved that A u t s n G is metabelian if G is soluble, and that A u t s n G is either finite or abelian if G is polycyclic.

Soluble Groups with Many Černikov Quotients

Silvana FranciosiFrancesco de Giovanni — 1985

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti H N con N p -gruppo abeliano elementare infinito e H gruppo irriducibile di automorfismi di N che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti propri artiniani su un gruppo risolubile finito, e si fornisce una caratterizzazione di tali moduli.

On groups with many nearly maximal subgroups

Silvana FranciosiFrancesco de Giovanni — 1998

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A subgroup M of a group G is nearly maximal if the index | G : M | is infinite but every subgroup of G properly containing M has finite index, and the group G is called nearly I M if all its subgroups of infinite index are intersections of nearly maximal subgroups. It is proved that an infinite (generalized) soluble group is nearly I M if and only if it is either cyclic or dihedral.

On automorphisms fixing subnormal subgroups of soluble groups

Silvana FranciosiFrancesco de Giovanni — 1988

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

The group A u t s n G of all automorphisms leaving invariant every subnormal subgroup of the group G is studied. In particular it is proved that A u t s n G is metabelian if G is soluble, and that A u t s n G is either finite or abelian if G is polycyclic.

Soluble Groups with Many Černikov Quotients

Silvana FranciosiFrancesco de Giovanni — 1985

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti H N con N p -gruppo abeliano elementare infinito e H gruppo irriducibile di automorfismi di N che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti propri artiniani su un gruppo risolubile finito, e si fornisce una caratterizzazione di tali moduli.

Groups with Normality Conditions for Non-Periodic Subgroups

Maria De FalcoFrancesco de GiovanniCarmela Musella — 2011

Bollettino dell'Unione Matematica Italiana

The structure of (non-periodic) groups in which all non-periodic subgroups have a prescribed property is investigated. Among other choices, we consider properties generalizing normality, like subnormality, permutability and pronormality. Moreover, non-periodic groups whose proper non-periodic subgroups belong to a given group class are studied.

Page 1

Download Results (CSV)