The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Doubling constant mean curvature tori in S 3

Adrian ButscherFrank Pacard — 2006

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

The Clifford tori in S 3 constitute a one-parameter family of flat, two-dimensional, constant mean curvature (CMC) submanifolds. This paper demonstrates that new, topologically non-trivial CMC surfaces resembling a pair of neighbouring Clifford tori connected at a sub-lattice consisting of at least two points by small catenoidal bridges can be constructed by perturbative PDE methods. That is, one can create a submanifold that has almost everywhere constant mean curvature by gluing a re-scaled catenoid...

Multiple end solutions to the Allen-Cahn equation in 2

Michał KowalczykYong LiuFrank Pacard

Séminaire Laurent Schwartz — EDP et applications

An entire solution of the Allen-Cahn equation Δ u = f ( u ) , where f is an odd function and has exactly three zeros at ± 1 and 0 , e.g. f ( u ) = u ( u 2 - 1 ) , is called a 2 k end solution if its nodal set is asymptotic to 2 k half lines, and if along each of these half lines the function u looks (up to a multiplication by - 1 ) like the one dimensional, odd, heteroclinic solution H , of H ' ' = f ( H ) . In this paper we present some recent advances in the theory of the multiple end solutions. We begin with the description of the moduli space of such solutions....

Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation

Monica MussoFrank PacardJuncheng Wei — 2012

Journal of the European Mathematical Society

We address the problem of the existence of finite energy solitary waves for nonlinear Klein-Gordon or Schrödinger type equations Δ u - u + f ( u ) = 0 in N , u H 1 ( N ) , where N 2 . Under natural conditions on the nonlinearity f , we prove the existence of 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦𝑚𝑎𝑛𝑦𝑛𝑜𝑛𝑟𝑎𝑑𝑖𝑎𝑙𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 in any dimension N 2 . Our result complements earlier works of Bartsch and Willem ( N = 4 𝚘𝚛 N 6 ) and Lorca-Ubilla ( N = 5 ) where solutions invariant under the action of O ( 2 ) × O ( N - 2 ) are constructed. In contrast, the solutions we construct are invariant under the action of D k × O ( N - 2 ) where D k O ( 2 ) denotes the dihedral group...

Bubbling along boundary geodesics near the second critical exponent

Manuel del PinoMonica MussoFrank Pacard — 2010

Journal of the European Mathematical Society

The role of the second critical exponent p = ( n + 1 ) / ( n - 3 ) , the Sobolev critical exponent in one dimension less, is investigated for the classical Lane–Emden–Fowler problem Δ u + u p = 0 , u > 0 under zero Dirichlet boundary conditions, in a domain Ω in n with bounded, smooth boundary. Given Γ , a geodesic of the boundary with negative inner normal curvature we find that for p = ( n + 1 ) / ( n - 3 - ε ) , there exists a solution u ε such that | u ε | 2 converges weakly to a Dirac measure on Γ as ε 0 + , provided that Γ is nondegenerate in the sense of second variations of...

Page 1

Download Results (CSV)