The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

Unramified quaternion extensions of quadratic number fields

Franz Lemmermeyer — 1997

Journal de théorie des nombres de Bordeaux

Classical results of Rédei, Reichardt and Scholz show that unramified cyclic quartic extensions of quadratic number fields k correspond to certain factorizations of its discriminant disc k . In this paper we extend their results to unramified quaternion extensions of k which are normal over , and show how to construct them explicitly.

Binomial squares in pure cubic number fields

Franz Lemmermeyer — 2012

Journal de Théorie des Nombres de Bordeaux

Let K = ( ω ) , with ω 3 = m a positive integer, be a pure cubic number field. We show that the elements α K × whose squares have the form a - ω for rational numbers a form a group isomorphic to the group of rational points on the elliptic curve E m : y 2 = x 3 - m . This result will allow us to construct unramified quadratic extensions of pure cubic number fields K .

Page 1

Download Results (CSV)