Currently displaying 1 – 16 of 16

Showing per page

Order by Relevance | Title | Year of publication

The set of minimal distances in Krull monoids

Alfred GeroldingerQinghai Zhong — 2016

Acta Arithmetica

Let H be a Krull monoid with class group G. Then every nonunit a ∈ H can be written as a finite product of atoms, say a = u 1 · . . . · u k . The set (a) of all possible factorization lengths k is called the set of lengths of a. If G is finite, then there is a constant M ∈ ℕ such that all sets of lengths are almost arithmetical multiprogressions with bound M and with difference d ∈ Δ*(H), where Δ*(H) denotes the set of minimal distances of H. We show that max Δ*(H) ≤ maxexp(G)-2,(G)-1 and that equality holds if every...

Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids

Víctor BlancoPedro A. García-SánchezAlfred Geroldinger — 2010

Actes des rencontres du CIRM

Arithmetical invariants—such as sets of lengths, catenary and tame degrees—describe the non-uniqueness of factorizations in atomic monoids.We study these arithmetical invariants by the monoid of relations and by presentations of the involved monoids. The abstract results will be applied to numerical monoids and to Krull monoids.

The catenary degree of Krull monoids I

Alfred GeroldingerDavid J. GrynkiewiczWolfgang A. Schmid — 2011

Journal de Théorie des Nombres de Bordeaux

Let H be a Krull monoid with finite class group G such that every class contains a prime divisor (for example, a ring of integers in an algebraic number field or a holomorphy ring in an algebraic function field). The catenary degree c ( H ) of H is the smallest integer N with the following property: for each a H and each two factorizations z , z of a , there exist factorizations z = z 0 , ... , z k = z of a such that, for each i [ 1 , k ] , z i arises from z i - 1 by replacing at most N atoms from z i - 1 by at most N new atoms. Under a very mild condition...

Page 1

Download Results (CSV)