The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Capacité analytique et le problème de Painlevé

Hervé Pajot

Séminaire Bourbaki

Le problème de Painlevé consiste à trouver une caractérisation géométrique des sous-ensembles du plan complexe qui sont effaçables pour les fonctions holomorphes bornées. Ce problème d’analyse complexe a connu ces dernières années des avancées étonnantes, essentiellement grâce au dévelopement de techniques fines d’analyse réelle et de théorie de la mesure géométrique. Dans cet exposé, nous allons présenter et discuter une solution proposée par X. Tolsa en termes de courbure de Menger au problème...

Plongements bilipschitziens dans les espaces euclidiens, Q -courbure et flot quasi-conforme

Hervé Pajot

Séminaire de théorie spectrale et géométrie

Soit g 0 la métrique riemannienne standard sur 4 et soit g = e 2 u une déformation conforme lisse de g 0 . Nous présentons une condition suffisante en terme de Q -courbure pour que la variété ( 4 , g ) se plonge de façon bilipschitzienne, en tant qu’espace métrique, dans ( 4 , g 0 ) . Ce théorème du à Bonk, Heinonen et Saksman découle d’un résultat lié au problème du jacobien quasiconforme.

Courbure et sous-ensembles de courbes rectifiables dans le groupe de Heisenberg

Fausto FerrariBruno FranchiHervé Pajot

Séminaire Équations aux dérivées partielles

Nous présentons une condition suffisante pour qu’un compact dans le groupe de Heisenberg (muni de sa structure de Carnot-Carathéodory) soit contenu dans une courbe rectifiable. Cette condition est aussi nécessaire dans le cas de courbes régulières (en particulier, des géodésiques) et elle est inspirée du lemme géométrique faible du à Peter Jones dans le cas euclidien. Cette note repose sur l’exposé fait par le troisième auteur (au Séminaire X-EDP) et décrit les principaux résultats de l’article...

Page 1

Download Results (CSV)