Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

On the number of abelian groups of a given order (supplement)

Hong-Quan Liu — 1993

Acta Arithmetica

1. Introduction. The aim of this paper is to supply a still better result for the problem considered in [2]. Let A(x) denote the number of distinct abelian groups (up to isomorphism) of orders not exceeding x. We shall prove Theorem 1. For any ε > 0, A ( x ) = C x + C x 1 / 2 + C x 1 / 3 + O ( x 50 / 199 + ε ) , where C₁, C₂ and C₃ are constants given on page 261 of [2]. Note that 50/199=0.25125..., thus improving our previous exponent 40/159=0.25157... obtained in [2]. To prove Theorem 1, we shall proceed along the line of approach presented in [2]....

Page 1

Download Results (CSV)