The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Asymptotic formulae are provided for the number of representations of a natural number as the sum of four and of three squares that are pairwise coprime.
A new method for counting primes in a Beatty sequence is proposed, and it is shown that an asymptotic formula can be obtained for the number of such primes in a short interval.
We show that for almost all , the inequality
has solutions with odd prime numbers and , provided . Moreover, we give a rather sharp bound for the exceptional set.
This result provides almost-all results for Goldbach numbers in sequences rather thinner than the values taken by any polynomial.
We establish the non-singular Hasse principle for pairs of diagonal quartic equations in 22 or more variables. Our methods involve the estimation of a certain entangled two-dimensional 21st moment of quartic smooth Weyl sums via a novel cubic moment of Fourier coefficients.
Download Results (CSV)