The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Asymptotic windings over the trefoil knot.

Jacques Franchi — 2005

Revista Matemática Iberoamericana

Consider the group G:=PSL2(R) and its subgroups Γ:= PSL2(Z) and Γ':=DSL2(Z). G/Γ is a canonical realization (up to an homeomorphism) of the complement S3T of the trefoil knot T, and G/Γ' is a canonical realization of the 6-fold branched cyclic cover of S3T, which has a 3-dimensional cohomology of 1-forms. Putting natural left-invariant Riemannian metrics on G, it makes sense to ask which...

Masse des pointes, temps de retour et enroulements en courbure négative

Nathanaël EnriquezJacques Franchi — 2002

Bulletin de la Société Mathématique de France

Soient Γ un groupe discret géométriquement fini d’isométries d’une variété de Hadamard pincée X et 𝒫 une pointe de l’orbifold associé : = Γ X . Munissant T 1 de sa mesure de Patterson-Sullivan m , nous obtenons une estimation asymptotique de la masse d’un petit voisinage horocyclique de 𝒫 , moyennant une hypothèse sur la croissance du sous-groupe parabolique associé à 𝒫 , hypothèse qui est réalisée si X est symétrique de rang 1 . Nous en déduisons une estimation asymptotique du temps de retour du flot géodésique...

Page 1

Download Results (CSV)