The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 18 of 18

Showing per page

Order by Relevance | Title | Year of publication

On the delay differential equation y'(x) = ay(τ(x)) + by(x)

Jan Čermák — 1999

Annales Polonici Mathematici

The paper discusses the asymptotic properties of solutions of the scalar functional differential equation y ' ( x ) = a y ( τ ( x ) ) + b y ( x ) , x [ x 0 , ] . Asymptotic formulas are given in terms of solutions of the appropriate scalar functional nondifferential equation.

Asymptotic properties of differential equations with advanced argument

Jan Čermák — 2000

Czechoslovak Mathematical Journal

The paper discusses the asymptotic properties of solutions of the scalar functional differential equation y ' ( x ) = a y ( τ ( x ) ) + b y ( x ) , x [ x 0 , ) of the advanced type. We show that, given a specific asymptotic behaviour, there is a (unique) solution y ( x ) which behaves in this way.

Asymptotic behaviour of solutions of some linear delay differential equations

Jan Čermák — 2000

Mathematica Bohemica

In this paper we investigate the asymptotic properties of all solutions of the delay differential equation y’(x)=a(x)y((x))+b(x)y(x),      xI=[x0,). We set up conditions under which every solution of this equation can be represented in terms of a solution of the differential equation z’(x)=b(x)z(x),      xI and a solution of the functional equation |a(x)|((x))=|b(x)|(x),      xI.

On transformations of functional-differential equations

Jan Čermák — 1993

Archivum Mathematicum

The paper contains applications of Schrőder’s equation to differential equations with a deviating argument. There are derived conditions under which a considered equation with a deviating argument intersecting the identity y = x can be transformed into an equation with a deviation of the form τ ( x ) = λ x . Moreover, if the investigated equation is linear and homogeneous, we introduce a special form for such an equation. This special form may serve as a canonical form suitable for the investigation of oscillatory...

Asymptotic estimation for functional differential equations with several delays

Jan Čermák — 1999

Archivum Mathematicum

We discuss the asymptotic behaviour of all solutions of the functional differential equation y ' ( x ) = i = 1 m a i ( x ) y ( τ i ( x ) ) + b ( x ) y ( x ) , where b ( x ) < 0 . The asymptotic bounds are given in terms of a solution of the functional nondifferential equation i = 1 m | a i ( x ) | ω ( τ i ( x ) ) + b ( x ) ω ( x ) = 0 .

Několik poznámek ke zlomkovému kalkulu

Jan ČermákTomáš KiselaLuděk Nechvátal — 2020

Pokroky matematiky, fyziky a astronomie

Článek přináší základní pohled na oblast tzv. zlomkového kalkulu, tedy partii matematické analýzy, která je věnována derivacím neceločíselných řádů a souvisejícím otázkám. Je zde popsán historický vývoj tohoto pojmu, včetně motivací a aplikací. Speciálně se pak text zaměřuje na oblast diferenciálních rovnic s neceločíselnými derivacemi, na základní otázky spojené s jejich vyšetřováním a také na některé nové výzvy, které tato disciplína přináší.

Piers Bohl stále inspirující

Ján AndresJan ČermákLucie Fedorková — 2024

Pokroky matematiky, fyziky a astronomie

Článek je věnován památce Pierse Bohla (1865-1921), lotyšského matematika a šachisty, jehož mnohé výsledky předběhly svoji dobu a zůstaly tehdejší matematickou komunitou často nedoceněny. Kromě uvedení základních životopisných údajů komentuje tento text jeho dnes již všeobecně uznávaný přínos do několika oblastí matematické analýzy, zejména pak vět o pevném bodě a teorie kvaziperiodických funkcí. Hlavní inspirací pro sepsání tohoto článku byl však jiný Bohlův výsledek, tentokrát z oblasti teorie...

Page 1

Download Results (CSV)