The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Fixed points of Lipschitzian semigroups in Banach spaces

Jarosław Górnicki — 1997

Studia Mathematica

We prove the following theorem: Let p > 1 and let E be a real p-uniformly convex Banach space, and C a nonempty bounded closed convex subset of E. If T = T s : C C : s G = [ 0 , ) is a Lipschitzian semigroup such that g = l i m i n f G α i n f G δ 0 1 / α ʃ 0 α T β + δ p d β < 1 + c , where c > 0 is some constant, then there exists x ∈ C such that T s x = x for all s ∈ G.

Fixed points of asymptotically regular mappings in spaces with uniformly normal structure

Jarosław Górnicki — 1991

Commentationes Mathematicae Universitatis Carolinae

It is proved that: for every Banach space X which has uniformly normal structure there exists a k > 1 with the property: if A is a nonempty bounded closed convex subset of X and T : A A is an asymptotically regular mapping such that lim inf n | | | T n | | | < k , where | | | T | | | is the Lipschitz constant (norm) of T , then T has a fixed point in A .

Remarks on fixed points of rotative Lipschitzian mappings

Jarosław Górnicki — 1999

Commentationes Mathematicae Universitatis Carolinae

Let C be a nonempty closed convex subset of a Banach space E and T : C C a k -Lipschitzian rotative mapping, i.eṡuch that T x - T y k · x - y and T n x - x a · x - T x for some real k , a and an integer n > a . The paper concerns the existence of a fixed point of T in p -uniformly convex Banach spaces, depending on k , a and n = 2 , 3 .

Page 1

Download Results (CSV)