AM-Compactness of some classes of operators
We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact.
We characterize Banach lattices on which each regular order weakly compact (resp. b-weakly compact, almost Dunford-Pettis, Dunford-Pettis) operator is AM-compact.
We introduce and study the class of unbounded Dunford--Pettis operators. As consequences, we give basic properties and derive interesting results about the duality, domination problem and relationship with other known classes of operators.
We characterize Banach lattices and on which the adjoint of each operator from into which is order Dunford-Pettis and weak Dunford-Pettis, is Dunford-Pettis. More precisely, we show that if and are two Banach lattices then each order Dunford-Pettis and weak Dunford-Pettis operator from into has an adjoint Dunford-Pettis operator from into if, and only if, the norm of is order continuous or has the Schur property. As a consequence we show that, if and are two Banach...
We characterize Banach lattices on which every weak Banach-Saks operator is b-weakly compact.
The paper contains some applications of the notion of sets to several classes of operators on Banach lattices. In particular, we introduce and study the class of order -Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice whose adjoint maps order bounded subsets to an sets. As a sequence characterization of such operators, we see that an operator from a Banach space into a Banach lattice is order -Dunford-Pettis, if and only if for for every weakly null...
We introduce a new class of operators that generalizes L-weakly compact operators, which we call order almost L-weakly compact. We give some characterizations of this class and we show that this class of operators satisfies the domination problem.
Page 1