Corrélation de suites arithmétiques
On associe à certaines suites de nombres complexes une mesure borélienne positive sur le tore dont la transformée de Fourier-Walsh est une suite de moyennes liées à . La nature de (discrète, continue) est discutée dans quelques cas : suites presque-périodiques et certaines suites arithmétiques.
désigne la somme des chiffres de l’entier en base et la somme des chiffres de associée au développement de en fraction continue. Dans un article paru aux Annales de l’Institut Fourier (31 (1981), 1–15), Coquet, Rhin et Toffin montrent que, lorsque ou est irrationnel, la suite est équirépartie modulo 1. On précise ici que l’équirépartition est uniforme.
Dans cet article, nous démontrons que la mesure spectrale d’une suite multiplicative de module dont le spectre de Fourier-Bohr est non vide, est atomique. La preuve, basée sur un résultat de J.-P. Bertrandias, évite le calcul de la corrélation.
désigne la somme des chiffres de l’entier en base et la somme des chiffres de associée au développement en fraction continue de . La suite est équirépartie modulo 1 si et seulement si ou est irrationnel.
Page 1