On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
For boundary or distributed controls, we get an approximate controllability result for the Navier-Stokes equations in dimension 2 in the case where the fluid is incompressible and slips on the boundary in agreement with the Navier slip boundary conditions.
We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint–Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
We study the boundary controllability of a nonlinear Korteweg–de Vries equation with the Dirichlet boundary condition on an interval with a critical length for which it has been shown by Rosier that the linearized control system around the origin is not controllable. We prove that the nonlinear term gives the local controllability around the origin.
Page 1