Real Hypersurfaces in Complex Space Forms With etta-Parallel
In this paper we prove a non-existence of real hypersurfaces in complex hyperbolic two-plane Grassmannians SU2.m/S(U2·Um), m≥3, whose structure tensors {ɸi}i=1,2,3 commute with the shape operator.
We introduce the new notion of pseudo--parallel real hypersurfaces in a complex projective space as real hypersurfaces satisfying a condition about the covariant derivative of the structure Jacobi operator in any direction of the maximal holomorphic distribution. This condition generalizes parallelness of the structure Jacobi operator. We classify this type of real hypersurfaces.
In this paper, we study closed -maximal spacelike hypersurfaces in anti-de Sitter space with two distinct principal curvatures and give some integral formulas about these hypersurfaces.
In this paper we classify real hypersurfaces with constant totally real bisectional curvature in a non flat complex space form , as those which have constant holomorphic sectional curvature given in [6] and [13] or constant totally real sectional curvature given in [11].
We study classifying problems of real hypersurfaces in a complex two-plane Grassmannian . In relation to the generalized Tanaka-Webster connection, we consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator coincides with the covariant derivative. In this case, we prove complete classifications for real hypersurfaces in satisfying such conditions.
Lee, Kim and Suh (2012) gave a characterization for real hypersurfaces of Type in complex two plane Grassmannians with a commuting condition between the shape operator and the structure tensors and for in . Motivated by this geometrical notion, in this paper we consider a new commuting condition in relation to the shape operator and a new operator induced by two structure tensors and . That is, this commuting shape operator is given by . Using this condition, we prove that...
In this paper, first we introduce a new notion of commuting condition that between the shape operator and the structure tensors and for real hypersurfaces in . Suprisingly, real hypersurfaces of type , that is, a tube over a totally geodesic in complex two plane Grassmannians satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in satisfying the commuting condition. Finally we get a characterization of Type in terms of such commuting...
This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface in complex space form . In the second, we give a complete classification of real hypersurfaces in which satisfy the above geometric facts.
We characterize real hypersurfaces with constant holomorphic sectional curvature of a non flat complex space form as the ones which have constant totally real sectional curvature.
Page 1