The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Matrice magique associée à un germe de courbe plane et division par l’idéal jacobien

Joël BriançonPhilippe MaisonobeTristan Torrelli — 2007

Annales de l’institut Fourier

Nous nous donnons, dans l’anneau des germes de fonctions holomorphes à l’origine de 2 , une fonction f définissant une singularité isolée et nous nous intéressons à l’équation u f x + v f y = w f , lorsque la fonction w est donnée. Nous introduisons les multiplicités d’intersection relatives de w et f y le long des branches de f et nous étudions les solutions à l’aide de ces valuations. Grâce aux résultats ainsi démontrés, nous construisons explicitement une équation fonctionnelle vérifiée par f .

Algorithme de calcul du polynôme de Bernstein : Cas non dégénéré

Joël BriançonMichel GrangerPhilippe MaisonobeM. Miniconi — 1989

Annales de l'institut Fourier

Nous commençons par indiquer comment la connaissance du degré d’un opérateur différentiel, unitaire en s et annulant f s , permet de donner un algorithme de calcul du polynôme de Bernstein d’un germe f de fonction analytique à singularité isolée. Nous étudions alors le cas d’une singularité non dégénérée par rapport à son polygôme de Newton; nous donnons un algorithme pour calculer le polynôme de Bernstein de ces singularités et l’équation fonctionnelle associée. Notre méthode utilise une...

Page 1

Download Results (CSV)