The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Duality and the Martin compactification

John C. Taylor — 1972

Annales de l'institut Fourier

Let be a Bauer sheaf that admits a Green function. Then there exists a diffusion process corresponding to the sheaf whose resolvent possesses a Hunt-Kunita-Watanabe dual resolvent that comes from a diffusion process. If is a Brelot sheaf which possesses an adjoint sheaf * the dual process corresponds to * . The Martin compactification defined by a Brelot sheaf that admits a Green function coincides with a Kunita-Watanabe compactification defined by the dual resolvent.

On the Martin compactification of a bounded Lipschitz domain in a riemannian manifold

John C. Taylor — 1978

Annales de l'institut Fourier

The Martin compactification of a bounded Lipschitz domain D R n is shown to be D for a large class of uniformly elliptic second order partial differential operators on D . Let X be an open Riemannian manifold and let M X be open relatively compact, connected, with Lipschitz boundary. Then M is the Martin compactification of M associated with the restriction to M of the Laplace-Beltrami operator on X . Consequently an open Riemannian manifold X has at most one compactification which is a compact...

The Martin boundaries of equivalent sheaves

John C. Taylor — 1970

Annales de l'institut Fourier

The Martin compactification of X defined by a Brelot sheaf H 1 satisfying proportionality is shown to be the same as for H 2 if the sheaves agree outside a compact set. Minimal points coincide and hence S 1 + and S 2 + are isomorphic topological cones. Nakai’s result on the extension to X of a function harmonic outside a compact set is extended to Bauer’s theory. The connected components of the Martin boundary Δ correspond to the ends of X which are related to direct decomposition of the cone H + .

Page 1

Download Results (CSV)