In this paper we obtain a limit model for a turbine blade fixed to a 3D solid. This model is a three-dimensional linear elasticity problem in the 3D part of the piece (the rotor) and a two-dimensional problem (the nonlinear shallow shell equations) in the 2D part (the turbine blade), with junction conditions in the part of the turbine blade fixed to the rotor. To obtain this model, we perform an asymptotic analysis, starting with the nonlinear three-dimensional elasticity equations on all the pieces...
Let X be a Banach space and ν a countably additive X-valued measure defined on a σ-algebra. We discuss some generation properties of the Banach space L¹(ν) and its connection with uniform Eberlein compacta. In this way, we provide a new proof that L¹(ν) is weakly compactly generated and embeds isomorphically into a Hilbert generated Banach space. The Davis-Figiel-Johnson-Pełczyński factorization of the integration operator is also analyzed. As a result, we prove that if is both completely continuous...
Let X be a Banach space. The property (∗) “the unit ball of X belongs to Baire(X, weak)” holds whenever the unit ball of X* is weak*-separable; on the other hand, it is also known that the validity of (∗) ensures that X* is weak*-separable. In this paper we use suitable renormings of and the Johnson-Lindenstrauss spaces to show that (∗) lies strictly between the weak*-separability of X* and that of its unit ball. As an application, we provide a negative answer to a question raised by K. Musiał....
We study integration of Banach space-valued functions with respect to Banach space-valued measures. We focus our attention on natural extensions to this setting of the Birkhoff and McShane integrals. The corresponding generalization of the Birkhoff integral was first considered by Dobrakov under the name -integral. Our main result states that -integrability implies McShane integrability in contexts in which the later notion is definable. We also show that a function is measurable and McShane integrable...
We prove that if a Riemann surface has a linear isoperimetric inequality and verifies an extra condition of regularity, then there exists a non-constant harmonic function with finite Dirichlet integral in the surface.
We prove too, by an example, that the implication is not true without the condition of regularity.
We study the relationship between linear isoperimetric inequalities and the existence of non-constant positive harmonic functions on Riemann surfaces.
We also study the relationship between growth conditions of length of spheres and the existence and the existence of Green's function on Riemann surfaces.
Let X, Y be two compacta with Sh(X) = Sh (Y). Then, the spaces of components of X, Y are homeomorphic. This does not happen, in general, when X, Y are quasi-equivalent. In this paper we give a sufficient condition for the existence of a homeomorphism between the spaces of components of two quasi-equivalent compacta X, Y which maps each component in a quasi-equivalent component.
If X is a geodesic metric space and x 1; x 2; x 3 ∈ X, a geodesic triangle T = {x 1; x 2; x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. We denote by δ(X) the sharp hyperbolicity constant of X, i.e., δ(X) = inf {δ ≥ 0: X is δ-hyperbolic}. We obtain information about the hyperbolicity constant...
We prove that under appropriate assumptions adding or removing an infinite amount of edges to a given planar graph preserves its non-hyperbolicity, a result which is shown to be false in general. In particular, we make a conjecture that every tessellation graph of ℝ2 with convex tiles is non-hyperbolic; it is shown that in order to prove this conjecture it suffices to consider tessellation graphs of ℝ2 such that every tile is a triangle and a partial answer to this question is given. A weaker version...
En este trabajo se analizan los grados de libertad de que dispone el investigador para fijar o acotar los tamaños de primera y segunda especie y las potencias garantizadas en aceptación y rechazo, asociados a una prueba óptima de un contraste de hipótesis. En especial se estudia la influencia del tamaño de muestra fijo o libre, la proximidad de las hipótesis nula y alternativa y el dar al investigador una tercera opción consistente en dudar (no decidirse ni por la hipótesis nula ni por la alternativa).
...
En este trabajo se describe la implementación de un algoritmo para el cálculo de polinomios zonales, así como dos aplicaciones explícitas de éstos en el ámbito del análisis multivariante. Concretamente, esta implementación permite obtener resultados de sumación aproximados para funciones hipergeométricas de argumento matricial que, a su vez, pueden utilizarse en la génesis de distribuciones multivariantes discretas con frecuencias simétricas. De igual forma, se pone en práctica un conocido resultado...
In this paper we show that to check Gromov hyperbolicity of any surface of constant negative curvature, or Riemann surface, we only need to verify the Rips condition on a very small class of triangles, namely, those obtained by marking three points in a simple closed geodesic. This result is, in fact, a new characterization of Gromov hyperbolicity for Riemann surfaces.
If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. Deciding whether or not a graph is hyperbolic is usually very difficult; therefore, it is interesting to find classes of graphs which are hyperbolic. A graph is circulant...
We consider a discrete-time, generically incomplete market model and a behavioural investor with power-like utility and distortion functions. The existence of optimal strategies in this setting has been shown in Carassus-Rásonyi (2015) under certain conditions on the parameters of these power functions.
In the present paper we prove the existence of optimal strategies under a different set of conditions on the parameters, identical to the ones in Rásonyi-Rodrigues (2013), which...
In this paper we improve recent results dealing with cellular covers of R-modules. Cellular covers (sometimes called colocalizations) come up in the context of homotopical localization of topological spaces. They are related to idempotent cotriples, idempotent comonads or coreflectors in category theory.
Recall that a homomorphism of R-modules π: G → H is called a cellular cover over H if π induces an isomorphism , where π⁎(φ) = πφ for each (where maps are acting on the left). On the one hand,...
As is well known, torsion abelian groups are not preserved by localization functors. However, Libman proved that the cardinality of LT is bounded by whenever T is torsion abelian and L is a localization functor. In this paper we study localizations of torsion abelian groups and investigate new examples. In particular we prove that the structure of LT is determined by the structure of the localization of the primary components of T in many cases. Furthermore, we completely characterize the relationship...
We introduce and characterize the class of multivariate quasi-copulas with quadratic sections in one variable. We also present and analyze examples to illustrate our results.
Download Results (CSV)