Method of Rothe in evolution equations
We discuss the numerical modeling of heat exchange between the infiltrated water and porous media matrix. An unsaturated-saturated flow is considered with boundary conditions reflecting the external driven forces. The developed numerical method is efficient and can be used for solving the inverse problems concerning determination of transmission coefficients for heat energy exchange inside and also on the boundary of porous media. Numerical experiments support our method.
A nonlinear system of equations generalizing von Kármán equations is studied. The existence of a solution is proved and the relation between the solutions of the considered system and the solutions of von Kármán system is studied. The system considered is derived in a former paper by Lepig under the assumption of a nonlinear relation between the intensity of stresses and deformations in the constitutive law.
The convergence of Rothe’s method in Hölder spaces is discussed. The obtained results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces recently achieved by the first author. The convergence and its rate are derived inside a parabolic cylinder assuming an additional compatibility conditions.
Page 1 Next