Slope filtrations revisited.
We give an automata-theoretic description of the algebraic closure of the rational function field over a finite field , generalizing a result of Christol. The description occurs within the Hahn-Mal’cev-Neumann field of “generalized power series” over . In passing, we obtain a characterization of well-ordered sets of rational numbers whose base expansions are generated by a finite automaton, and exhibit some techniques for computing in the algebraic closure; these include an adaptation to positive...
We recall some basic constructions from -adic Hodge theory, then describe some recent results in the subject. We chiefly discuss the notion of -pairs, introduced recently by Berger, which provides a natural enlargement of the category of -adic Galois representations. (This enlargement, in a different form, figures in recent work of Colmez, Bellaïche, and Chenevier on trianguline representations.) We also discuss results of Liu that indicate that the formalism of Galois cohomology, including Tate...
Given a smooth subscheme of a projective space over a finite field, we compute the probability that its intersection with a fixed number of hypersurface sections of large degree is smooth of the expected dimension. This generalizes the case of a single hypersurface, due to Poonen. We use this result to give a probabilistic model for the number of rational points of such a complete intersection. A somewhat surprising corollary is that the number of rational points on a random smooth intersection...
Page 1