Effective Convergence Bounds for Frobenius Structures on Connections

Kiran S. Kedlaya; Jan Tuitman

Rendiconti del Seminario Matematico della Università di Padova (2012)

  • Volume: 128, page 7-16
  • ISSN: 0041-8994

How to cite

top

Kedlaya, Kiran S., and Tuitman, Jan. "Effective Convergence Bounds for Frobenius Structures on Connections." Rendiconti del Seminario Matematico della Università di Padova 128 (2012): 7-16. <http://eudml.org/doc/275100>.

@article{Kedlaya2012,
author = {Kedlaya, Kiran S., Tuitman, Jan},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Picard-Fuchs equation; Gauss-Manin connection; Frobenius lift; Frobenius structure; effective convergence bounds},
language = {eng},
pages = {7-16},
publisher = {Seminario Matematico of the University of Padua},
title = {Effective Convergence Bounds for Frobenius Structures on Connections},
url = {http://eudml.org/doc/275100},
volume = {128},
year = {2012},
}

TY - JOUR
AU - Kedlaya, Kiran S.
AU - Tuitman, Jan
TI - Effective Convergence Bounds for Frobenius Structures on Connections
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 128
SP - 7
EP - 16
LA - eng
KW - Picard-Fuchs equation; Gauss-Manin connection; Frobenius lift; Frobenius structure; effective convergence bounds
UR - http://eudml.org/doc/275100
ER -

References

top
  1. [1] B. Dwork - P. Robba, Effective p-adic bounds for solutions of homogeneous linear differential equations . Trans. Amer. Math. Soc., 259 (2) (1980), pp. 559–577. Zbl0439.12016MR567097
  2. [1] K. S. Kedlaya, p-adic Differential Equations . Cambridge University Press, 2010. Zbl1213.12009MR2663480
  3. [2] K. S. Kedlaya, Effective p-adic cohomology for cyclic cubic threefolds . In Computational Algebraic and Analytic Geometry of Low-dimensional Varieties. Amer. Math. Soc., 2012. Available at http://math.mit.edu/~kedlaya/papers/. MR2953828
  4. [3] A. Lauder, Rigid cohomology and p-adic point counting . J. Théor. Nombres Bordeaux, 17 (2005), pp. 169–180. Zbl1087.14020MR2152218
  5. [4] A. Lauder, A recursive method for computing zeta functions of varieties . LMS J. Comput. Math., 9 (2006), pp. 222–269. Zbl1108.14018MR2261044

NotesEmbed ?

top

You must be logged in to post comments.