# Effective Convergence Bounds for Frobenius Structures on Connections

Rendiconti del Seminario Matematico della Università di Padova (2012)

- Volume: 128, page 7-16
- ISSN: 0041-8994

## Access Full Article

top## How to cite

topKedlaya, Kiran S., and Tuitman, Jan. "Effective Convergence Bounds for Frobenius Structures on Connections." Rendiconti del Seminario Matematico della Università di Padova 128 (2012): 7-16. <http://eudml.org/doc/275100>.

@article{Kedlaya2012,

author = {Kedlaya, Kiran S., Tuitman, Jan},

journal = {Rendiconti del Seminario Matematico della Università di Padova},

keywords = {Picard-Fuchs equation; Gauss-Manin connection; Frobenius lift; Frobenius structure; effective convergence bounds},

language = {eng},

pages = {7-16},

publisher = {Seminario Matematico of the University of Padua},

title = {Effective Convergence Bounds for Frobenius Structures on Connections},

url = {http://eudml.org/doc/275100},

volume = {128},

year = {2012},

}

TY - JOUR

AU - Kedlaya, Kiran S.

AU - Tuitman, Jan

TI - Effective Convergence Bounds for Frobenius Structures on Connections

JO - Rendiconti del Seminario Matematico della Università di Padova

PY - 2012

PB - Seminario Matematico of the University of Padua

VL - 128

SP - 7

EP - 16

LA - eng

KW - Picard-Fuchs equation; Gauss-Manin connection; Frobenius lift; Frobenius structure; effective convergence bounds

UR - http://eudml.org/doc/275100

ER -

## References

top- [1] B. Dwork - P. Robba, Effective p-adic bounds for solutions of homogeneous linear differential equations . Trans. Amer. Math. Soc., 259 (2) (1980), pp. 559–577. Zbl0439.12016MR567097
- [1] K. S. Kedlaya, p-adic Differential Equations . Cambridge University Press, 2010. Zbl1213.12009MR2663480
- [2] K. S. Kedlaya, Effective p-adic cohomology for cyclic cubic threefolds . In Computational Algebraic and Analytic Geometry of Low-dimensional Varieties. Amer. Math. Soc., 2012. Available at http://math.mit.edu/~kedlaya/papers/. MR2953828
- [3] A. Lauder, Rigid cohomology and p-adic point counting . J. Théor. Nombres Bordeaux, 17 (2005), pp. 169–180. Zbl1087.14020MR2152218
- [4] A. Lauder, A recursive method for computing zeta functions of varieties . LMS J. Comput. Math., 9 (2006), pp. 222–269. Zbl1108.14018MR2261044

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.