Effective Convergence Bounds for Frobenius Structures on Connections

Kiran S. Kedlaya; Jan Tuitman

Rendiconti del Seminario Matematico della Università di Padova (2012)

  • Volume: 128, page 7-16
  • ISSN: 0041-8994

How to cite

top

Kedlaya, Kiran S., and Tuitman, Jan. "Effective Convergence Bounds for Frobenius Structures on Connections." Rendiconti del Seminario Matematico della Università di Padova 128 (2012): 7-16. <http://eudml.org/doc/275100>.

@article{Kedlaya2012,
author = {Kedlaya, Kiran S., Tuitman, Jan},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Picard-Fuchs equation; Gauss-Manin connection; Frobenius lift; Frobenius structure; effective convergence bounds},
language = {eng},
pages = {7-16},
publisher = {Seminario Matematico of the University of Padua},
title = {Effective Convergence Bounds for Frobenius Structures on Connections},
url = {http://eudml.org/doc/275100},
volume = {128},
year = {2012},
}

TY - JOUR
AU - Kedlaya, Kiran S.
AU - Tuitman, Jan
TI - Effective Convergence Bounds for Frobenius Structures on Connections
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 128
SP - 7
EP - 16
LA - eng
KW - Picard-Fuchs equation; Gauss-Manin connection; Frobenius lift; Frobenius structure; effective convergence bounds
UR - http://eudml.org/doc/275100
ER -

References

top
  1. [1] B. Dwork - P. Robba, Effective p-adic bounds for solutions of homogeneous linear differential equations . Trans. Amer. Math. Soc., 259 (2) (1980), pp. 559–577. Zbl0439.12016MR567097
  2. [1] K. S. Kedlaya, p-adic Differential Equations . Cambridge University Press, 2010. Zbl1213.12009MR2663480
  3. [2] K. S. Kedlaya, Effective p-adic cohomology for cyclic cubic threefolds . In Computational Algebraic and Analytic Geometry of Low-dimensional Varieties. Amer. Math. Soc., 2012. Available at http://math.mit.edu/~kedlaya/papers/. MR2953828
  4. [3] A. Lauder, Rigid cohomology and p-adic point counting . J. Théor. Nombres Bordeaux, 17 (2005), pp. 169–180. Zbl1087.14020MR2152218
  5. [4] A. Lauder, A recursive method for computing zeta functions of varieties . LMS J. Comput. Math., 9 (2006), pp. 222–269. Zbl1108.14018MR2261044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.