Effective Convergence Bounds for Frobenius Structures on Connections
Rendiconti del Seminario Matematico della Università di Padova (2012)
- Volume: 128, page 7-16
- ISSN: 0041-8994
Access Full Article
topHow to cite
topKedlaya, Kiran S., and Tuitman, Jan. "Effective Convergence Bounds for Frobenius Structures on Connections." Rendiconti del Seminario Matematico della Università di Padova 128 (2012): 7-16. <http://eudml.org/doc/275100>.
@article{Kedlaya2012,
author = {Kedlaya, Kiran S., Tuitman, Jan},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Picard-Fuchs equation; Gauss-Manin connection; Frobenius lift; Frobenius structure; effective convergence bounds},
language = {eng},
pages = {7-16},
publisher = {Seminario Matematico of the University of Padua},
title = {Effective Convergence Bounds for Frobenius Structures on Connections},
url = {http://eudml.org/doc/275100},
volume = {128},
year = {2012},
}
TY - JOUR
AU - Kedlaya, Kiran S.
AU - Tuitman, Jan
TI - Effective Convergence Bounds for Frobenius Structures on Connections
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2012
PB - Seminario Matematico of the University of Padua
VL - 128
SP - 7
EP - 16
LA - eng
KW - Picard-Fuchs equation; Gauss-Manin connection; Frobenius lift; Frobenius structure; effective convergence bounds
UR - http://eudml.org/doc/275100
ER -
References
top- [1] B. Dwork - P. Robba, Effective p-adic bounds for solutions of homogeneous linear differential equations . Trans. Amer. Math. Soc., 259 (2) (1980), pp. 559–577. Zbl0439.12016MR567097
- [1] K. S. Kedlaya, p-adic Differential Equations . Cambridge University Press, 2010. Zbl1213.12009MR2663480
- [2] K. S. Kedlaya, Effective p-adic cohomology for cyclic cubic threefolds . In Computational Algebraic and Analytic Geometry of Low-dimensional Varieties. Amer. Math. Soc., 2012. Available at http://math.mit.edu/~kedlaya/papers/. MR2953828
- [3] A. Lauder, Rigid cohomology and p-adic point counting . J. Théor. Nombres Bordeaux, 17 (2005), pp. 169–180. Zbl1087.14020MR2152218
- [4] A. Lauder, A recursive method for computing zeta functions of varieties . LMS J. Comput. Math., 9 (2006), pp. 222–269. Zbl1108.14018MR2261044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.