The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let X be a rearrangement-invariant space of Lebesgue-measurable functions on , such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on , define . We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at by ; more precisely, when for all F,G ∈ X(w).
Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies . Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.
Suppose is a nonnegative, locally integrable, radial function on , which is nonincreasing in . Set when and . Given and , we show there exists so that for all , if and only if exists with for all dyadic cubes Q, where . This result is used to refine recent estimates of C.L. Fefferman and D.H. Phong on the distribution of eigenvalues of Schrödinger operators.
We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of ⨍, , by an expression involving the nonincreasing rearrangement of ⨍. This estimate is used to obtain necessary and sufficient conditions for the boundedness of between classical Lorentz spaces.
Download Results (CSV)