Monotone iterative technique for partial dynamic equations of first order on time scales.
2000 Mathematics Subject Classification: 90C25, 68W10, 49M37. A general framework of the (parallel variable transformation) PVT-type algorithm, called the PVT-MYR algorithm, for minimizing a non-smooth convex function is proposed, via the Moreau-Yosida regularization. As a particular scheme of this framework an ε-scheme is also presented. The global convergence of this algorithm is given under the assumptions of strong convexity of the objective function and an ε-descent condition determined by...
We discuss the rigidity of Einstein manifolds and generalized quasi-Einstein manifolds. We improve a pinching condition used in a theorem on the rigidity of compact Einstein manifolds. Under an additional condition, we confirm a conjecture on the rigidity of compact Einstein manifolds. In addition, we prove that every closed generalized quasi-Einstein manifold is an Einstein manifold provided μ = -1/(n-2), λ ≤ 0 and β ≤ 0.
The initial-boundary value problem of two-dimensional incompressible fluid flow in stream function form is considered. A prediction-correction Legendre spectral scheme is proposed, which is easy to be performed. The numerical solution possesses the accuracy of second-order in time and higher order in space. The numerical experiments show the high accuracy of this approach.
We apply Nevanlinna's value distribution theory to show that some functional equations of Diophantine type have no admissible meromorphic solutions. This result confirms a recent conjecture of Li and Yang.
In this paper, we investigate the problem of global output-feedback regulation for a class of switched nonlinear systems with unknown linear growth condition and uncertain output function. Based on the backstepping method, an adaptive output-feedback controller is designed to guarantee that the state of the switched nonlinear system can be globally regulated to the origin while maintaining global boundedness of the resulting closed-loop switched system under arbitrary switchings. A numerical example...
Let be an odd integer and be any given real number. We prove that if , , , , are nonzero real numbers, not all of the same sign, and is irrational, then for any real number with , the inequality has infinitely many solutions in prime variables , where for and for odd integer with . This improves a recent result in W. Ge, T. Wang (2018).
Page 1