The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 21

Showing per page

Order by Relevance | Title | Year of publication

On the number of abelian groups of a given order (supplement)

Hong-Quan Liu — 1993

Acta Arithmetica

1. Introduction. The aim of this paper is to supply a still better result for the problem considered in [2]. Let A(x) denote the number of distinct abelian groups (up to isomorphism) of orders not exceeding x. We shall prove Theorem 1. For any ε > 0, A ( x ) = C x + C x 1 / 2 + C x 1 / 3 + O ( x 50 / 199 + ε ) , where C₁, C₂ and C₃ are constants given on page 261 of [2]. Note that 50/199=0.25125..., thus improving our previous exponent 40/159=0.25157... obtained in [2]. To prove Theorem 1, we shall proceed along the line of approach presented in [2]....

Page 1 Next

Download Results (CSV)