The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

K ( π , 1 ) conjecture for Artin groups

Luis Paris — 2014

Annales de la faculté des sciences de Toulouse Mathématiques

The purpose of this paper is to put together a large amount of results on the K ( π , 1 ) conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts, is as...

Geometric subgroups of surface braid groups

Luis ParisDale Rolfsen — 1999

Annales de l'institut Fourier

Let M be a surface, let N be a subsurface, and let n m be two positive integers. The inclusion of N in M gives rise to a homomorphism from the braid group B n N with n strings on N to the braid group B m M with m strings on M . We first determine necessary and sufficient conditions that this homomorphism is injective, and we characterize the commensurator, the normalizer and the centralizer of π 1 N in π 1 M . Then we calculate the commensurator, the normalizer and the centralizer of B n N in B m M for large surface braid...

Singular Hecke algebras, Markov traces, and HOMFLY-type invariants

Luis ParisLoïc Rabenda — 2008

Annales de l’institut Fourier

We define the singular Hecke algebra ( S B n ) as the quotient of the singular braid monoid algebra ( q ) [ S B n ] by the Hecke relations σ k 2 = ( q - 1 ) σ k + q , 1 k n - 1 . We define the notion of Markov trace in this context, fixing the number d of singular points, and we prove that a Markov trace determines an invariant on the links with d singular points which satisfies some skein relation. Let TR d denote the set of Markov traces with d singular points. This is a ( q , z ) -vector space. Our main result is that TR d is of dimension d + 1 . This result is completed...

Page 1

Download Results (CSV)