The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Note à propos d'une conjecture de H.J. Godwin sur les unités des corps cubiques

Marie-Nicole Gras — 1980

Annales de l'institut Fourier

On démontre, à partir de résultats de H.J. Godwin, H. Brunotte et F. Halter-Koch, le théorème suivant : soit K un corps cubique cyclique de conducteur m dont le groupe de Galois G est engendré par σ ; soit E le groupe des unités de norme 1. Soit ϵ E , ϵ 1 , telle que 𝒮 ( ϵ ) = 1 2 [ ( ϵ - ϵ σ ) 2 + ( ϵ σ - ϵ σ 2 ) 2 + ( ϵ σ 2 - ϵ ) 2 ] soit minimum. Alors ϵ est un Z [ G ] -générateur de E .

Classes et unités des extensions cycliques réelles de degré 4 de 𝐐

Marie-Nicole Gras — 1979

Annales de l'institut Fourier

Soit K une extension cyclique réelle de degré 4 de Q de sous-corps quadratique k . Nous déterminons le nombre de classes et les unités de K puis nous montrons que le problème de la “capitulation” de classes de k dans K est caractérisé par des propriétés élémentaires des unités de K . Nous avons obtenu une table numérique du nombre de classes, des unités ainsi que de l’éventuelle “capitulation” d’une classe, pour tous les corps K de conducteur f < 4000  ; nous en publions ici un extrait.

Signature des unités cyclotomiques et parité du nombre de classes des extensions cycliques de 𝐐 de degré premier impair

Georges GrasMarie-Nicole Gras — 1975

Annales de l'institut Fourier

Si K est une extension abélienne de Q de degré impair, l’étude du 2-groupe des classes (au sens ordinaire) de K (et même celle de la parité du nombre de classes h de K ) est non triviale, et les algorithmes connus ne dépassent guère le cas [ K : Q ] = 3 . L’expression analytique de h s’interprète à l’aide d’indices convenables de groupes d’unités cyclotomiques (Hasse et Leopoldt) ; ce dernier point de vue permet une caractérisation de la parité de h , en fonction de l’existence d’unités cyclotomiques...

Page 1

Download Results (CSV)