On the Weak Isomorphism of Strictly Ergodic Homeomorphisms.
Analytic cocycles of type over an irrational rotation are constructed and an example of that type is given, where all corresponding special flows are weakly mixing.
For an arbitrary set containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.
We establish existence and uniqueness of a canonical form for isometric extensions of an ergodic non-singular transformation T. This is applied to describe the structure of commutors of the isometric extensions. Moreover, for a compact group G, we construct a G-valued T-cocycle α which generates the ergodic skew product extension and admits a prescribed subgroup in the centralizer of .
We describe two methods of obtaining analytic flows on the torus which are disjoint from dynamical systems induced by some classical stationary processes.
Special flows over some locally rigid automorphisms and under L² ceiling functions satisfying a local L² Denjoy-Koksma type inequality are considered. Such flows are proved to be disjoint (in the sense of Furstenberg) from mixing flows and (under some stronger assumption) from weakly mixing flows for which the weak closure of the set of all instances consists of indecomposable Markov operators. As applications we prove that ∙ special flows built over ergodic interval exchange...
We study the centraliser of locally compact group extensions of ergodic probability preserving transformations. New methods establishing ergodicity of group extensions are introduced, and new examples of squashable and non-coalescent group extensions are constructed.
We study ergodic properties of the class of Gaussian automorphisms whose ergodic self-joinings remain Gaussian. For such automorphisms we describe the structure of their factors and of their centralizer. We show that Gaussian automorphisms with simple spectrum belong to this class. We prove a new sufficient condition for non-disjointness of automorphisms giving rise to a better understanding of Furstenberg's problem relating disjointness to the lack of common factors. This...
We prove the theorem promised in the title. Gaussians can be distinguished from simple maps by their property of divisibility. Roughly speaking, a system is divisible if it has a rich supply of direct product splittings. Gaussians are divisible and weakly mixing simple maps have no splittings at all so they cannot be isomorphic. The proof that they are disjoint consists of an elaboration of this idea, which involves, among other things, the notion of virtual divisibility, which is, more or less,...
We show that semisimple actions of l.c.s.c. Abelian groups and cocycles with values in such groups can be used to build new examples of semisimple automorphisms (ℤ-actions) which are relatively weakly mixing extensions of irrational rotations.
Page 1