A geometric proof to Cantor's theorem and an irrationality measure for some Cantor's series.
For k ≥ 2, the k-generalized Fibonacci sequence is defined to have the initial k terms 0,0,...,0,1 and be such that each term afterwards is the sum of the k preceding terms. We will prove that the number of solutions of the Diophantine equation (under some weak assumptions) is bounded by an effectively computable constant depending only on c.
Let and define , the -generalized Fibonacci sequence whose terms satisfy the recurrence relation , with initial conditions ( terms) and such that the first nonzero term is . The sequences and are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation . In this note, we use transcendental tools to provide a general method for finding the intersections which gives evidence supporting...
In 2000, Florian Luca proved that F₁₀ = 55 and L₅ = 11 are the largest numbers with only one distinct digit in the Fibonacci and Lucas sequences, respectively. In this paper, we find terms of a linear recurrence sequence with only one block of digits in its expansion in base g ≥ 2. As an application, we generalize Luca's result by finding the Fibonacci and Lucas numbers with only one distinct block of digits of length up to 10 in its decimal expansion.
Let be the sequence given by and for . In this paper, we show that the only solution of the equation is in positive integers and is .
In this note, we prove that there is no transcendental entire function such that and , for all sufficiently large , where .
In this paper, we find all solutions of the Diophantine equation in positive integers , with .
Page 1