Boundary integral equations of elasticity in domains with piecewise smooth boundaries
A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a -dimensional cone is given, where is an arbitrary open cone in and .
A sharp estimate for the decreasing rearrangement of the length of the gradient of solutions to a class of nonlinear Dirichlet and Neumann elliptic boundary value problems is established under weak regularity assumptions on the domain. As a consequence, the problem of gradient bounds in norms depending on global integrability properties is reduced to one-dimensional Hardy-type inequalities. Applications to gradient estimates in Lebesgue, Lorentz, Zygmund, and Orlicz spaces are presented.
The uniqueness theorem is proved for the linearized problem describing radiation and scattering of time-harmonic water waves by a vertical shell having an arbitrary horizontal cross-section. The uniqueness holds for all frequencies, and various locations of the shell are possible: surface-piercing, totally immersed and bottom-standing. A version of integral equation technique is outlined for finding a solution.
Pointwise interpolation inequalities, in particular, ku(x)c(Mu(x)) 1-k/m (Mmu(x))k/m, k<m, and |Izf(x)|c (MIf(x))Re z/Re (Mf(x))1-Re z/Re , 0<Re z<Re<n, where is the gradient of order , is the Hardy-Littlewood maximal operator, and is the Riesz potential of order , are proved. Applications to the theory of multipliers in pairs of Sobolev spaces are given. In particular, the maximal algebra in the multiplier space is described.
Page 1