The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

The equation x 2 n + y 2 n = z 5

Michael A. Bennett — 2006

Journal de Théorie des Nombres de Bordeaux

We show that the Diophantine equation of the title has, for n > 1 , no solution in coprime nonzero integers x , y and z . Our proof relies upon Frey curves and related results on the modularity of Galois representations.

Superelliptic equations arising from sums of consecutive powers

Michael A. BennettVandita PatelSamir Siksek — 2016

Acta Arithmetica

Using only elementary arguments, Cassels solved the Diophantine equation (x-1)³ + x³ + (x+1)³ = z² (with x, z ∈ ℤ). The generalization ( x - 1 ) k + x k + ( x + 1 ) k = z n (with x, z, n ∈ ℤ and n ≥ 2) was considered by Zhongfeng Zhang who solved it for k ∈ 2,3,4 using Frey-Hellegouarch curves and their corresponding Galois representations. In this paper, by employing some sophisticated refinements of this approach, we show that the only solutions for k = 5 have x = z = 0, and that there are no solutions for k = 6. The chief innovation...

On the equation a³ + b³ⁿ = c²

Michael A. BennettImin ChenSander R. DahmenSoroosh Yazdani — 2014

Acta Arithmetica

We study coprime integer solutions to the equation a³ + b³ⁿ = c² using Galois representations and modular forms. This case represents perhaps the last natural family of generalized Fermat equations descended from spherical cases which is amenable to resolution using the so-called modular method. Our techniques involve an elaborate combination of ingredients, ranging from ℚ-curves and a delicate multi-Frey approach, to appeal to intricate image of inertia arguments.

Page 1

Download Results (CSV)