The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Global left loop structures on spheres

Michael K. Kinyon — 2000

Commentationes Mathematicae Universitatis Carolinae

On the unit sphere 𝕊 in a real Hilbert space 𝐇 , we derive a binary operation such that ( 𝕊 , ) is a power-associative Kikkawa left loop with two-sided identity 𝐞 0 , i.e., it has the left inverse, automorphic inverse, and A l properties. The operation is compatible with the symmetric space structure of 𝕊 . ( 𝕊 , ) is not a loop, and the right translations which fail to be injective are easily characterized. ( 𝕊 , ) satisfies the left power alternative and left Bol identities “almost everywhere” but not everywhere....

F-quasigroups isotopic to groups

Tomáš KepkaMichael K. KinyonJon D. Phillips — 2010

Commentationes Mathematicae Universitatis Carolinae

In Kepka T., Kinyon M.K., Phillips J.D., , , we showed that every loop isotopic to an F-quasigroup is a Moufang loop. Here we characterize, via two simple identities, the class of F-quasigroups which are isotopic to groups. We call these quasigroups FG-quasigroups. We show that FG-quasigroups are linear over groups. We then use this fact to describe their structure. This gives us, for instance, a complete description of the simple FG-quasigroups. Finally, we show an equivalence of equational classes...

F-quasigroups and generalized modules

Tomáš KepkaMichael K. KinyonJon D. Phillips — 2008

Commentationes Mathematicae Universitatis Carolinae

In Kepka T., Kinyon M.K., Phillips J.D., , J. Algebra (2007), 435–461, we showed that every F-quasigroup is linear over a special kind of Moufang loop called an NK-loop. Here we extend this relationship by showing an equivalence between the class of (pointed) F-quasigroups and the class corresponding to a certain notion of generalized module (with noncommutative, nonassociative addition) for an associative ring.

Page 1

Download Results (CSV)