Boundary layer tails in periodic homogenization
In this paper, we use -convergence techniques to study the following variational problem where , with , and is a bounded domain of , . We obtain a -convergence result, on which one can easily read the usual concentration phenomena arising in critical growth problems. We extend the result to a non-homogeneous version of problem . Finally, a second order expansion in -convergence permits to identify the concentration points of the maximizing sequences, also in some...
This paper is devoted to the study of the homogenization of a porous medium, composed of different materials arranged in a periodic structure. This provides the profile of the saturation function for the limit material.
This paper focus on the properties of boundary layers in periodic homogenization in rectangular domains which are either fixed or have an oscillating boundary. Such boundary layers are highly oscillating near the boundary and decay exponentially fast in the interior to a non-zero limit that we call boundary layer tail. The influence of these boundary layer tails on interior error estimates is emphasized. They mainly have two effects (at first order with respect to the period ε): first, they add...
New -lower semicontinuity and relaxation results for integral functionals defined in BV() are proved, under a very weak dependence of the integrand with respect to the spatial variable . More precisely, only the lower semicontinuity in the sense of the -capacity is assumed in order to obtain the lower semicontinuity of the functional. This condition is satisfied, for instance, by the lower approximate limit of the integrand, if it is BV with respect to . Under this further BV dependence, a...
New -lower semicontinuity and relaxation results for integral functionals defined in BV() are proved, under a very weak dependence of the integrand with respect to the spatial variable . More precisely, only the lower semicontinuity in the sense of the -capacity is assumed in order to obtain the lower semicontinuity of the functional. This condition is satisfied, for instance, by the lower approximate limit of the integrand, if it is BV with respect to . Under this further BV dependence, a...
We prove a relaxation theorem in BV for a non coercive functional with linear growth. No continuity of the integrand with respect to the spatial variable is assumed.
Page 1