Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Gaussian curvature based tangential redistribution of points on evolving surfaces

Medľa, MatejMikula, Karol — 2017

Proceedings of Equadiff 14

There exist two main methods for computing a surface evolution, level-set method and Lagrangian method. Redistribution of points is a crucial element in a Lagrangian approach. In this paper we present a point redistribution that compress quads in the areas with a high Gaussian curvature. Numerical method is presented for a mean curvature flow of a surface approximated by quads.

Front matter

Mikula, KarolŠevčovič, DanielUrbán, Jozef — 2017

Proceedings of Equadiff 14

The Equadiff is a series of biannual conferences on mathematical analysis, numerical approximation and applications of differential equations. Proceedings of Equadiff 2017 Conference contain peer-reviewed contributions of participants of the conference. The proceedings cover a wide range of topics presented by plenary, minisymposia and contributed talks speakers. The scope of papers ranges from ordinary differential equations, differential inclusions and dynamical systems towards qualitative and...

Nonlinear Tensor Diffusion in Image Processing

Stašová, OlgaMikula, KarolHandlovičová, AngelaPeyriéras, Nadine — 2017

Proceedings of Equadiff 14

This paper presents and summarize our results concerning the nonlinear tensor diffusion which enhances image structure coherence. The core of the paper comes from [3, 2, 4, 5]. First we briefly describe the diffusion model and provide its basic properties. Further we build a semi-implicit finite volume scheme for the above mentioned model with the help of a co-volume mesh. This strategy is well-known as diamond-cell method owing to the choice of co-volume as a diamondshaped polygon, see [1]. We...

New efficient numerical method for 3D point cloud surface reconstruction by using level set methods

Kósa, BalázsHaličková-Brehovská, JanaMikula, Karol — 2017

Proceedings of Equadiff 14

In this article, we present a mathematical model and numerical method for surface reconstruction from 3D point cloud data, using the level-set method. The presented method solves surface reconstruction by the computation of the distance function to the shape, represented by the point cloud, using the so called Fast Sweeping Method, and the solution of advection equation with curvature term, which creates the evolution of an initial condition to the final state. A crucial point for efficiency is...

Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation

Angela HandlovičováKarol Mikula — 2008

Applications of Mathematics

We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.

Finite volume schemes for the generalized subjective surface equation in image segmentation

Karol MikulaMariana Remešíková — 2009

Kybernetika

In this paper, we describe an efficient method for 3D image segmentation. The method uses a PDE model – the so called generalized subjective surface equation which is an equation of advection-diffusion type. The main goal is to develop an efficient and stable numerical method for solving this problem. The numerical solution is based on semi-implicit time discretization and flux-based level set finite volume space discretization. The space discretization is discussed in details and we introduce three...

Applications of approximate gradient schemes for nonlinear parabolic equations

Robert EymardAngela HandlovičováRaphaèle HerbinKarol MikulaOlga Stašová — 2015

Applications of Mathematics

We develop gradient schemes for the approximation of the Perona-Malik equations and nonlinear tensor-diffusion equations. We prove the convergence of these methods to the weak solutions of the corresponding nonlinear PDEs. A particular gradient scheme on rectangular meshes is then studied numerically with respect to experimental order of convergence which shows its second order accuracy. We present also numerical experiments related to image filtering by time-delayed Perona-Malik and tensor diffusion...

Lagrangian evolution approach to surface-patch quadrangulation

Martin HúskaMatej Medl'aKarol MikulaSerena Morigi — 2021

Applications of Mathematics

We present a method for the generation of a pure quad mesh approximating a discrete manifold of arbitrary topology that preserves the patch layout characterizing the intrinsic object structure. A three-step procedure constitutes the core of our approach which first extracts the patch layout of the object by a topological partitioning of the digital shape, then computes the minimal surface given by the boundaries of the patch layout (basic quad layout) and then evolves it towards the object boundaries....

Counting number of cells and cell segmentation using advection-diffusion equations

We develop a method for counting number of cells and extraction of approximate cell centers in 2D and 3D images of early stages of the zebra-fish embryogenesis. The approximate cell centers give us the starting points for the subjective surface based cell segmentation. We move in the inner normal direction all level sets of nuclei and membranes images by a constant speed with slight regularization of this flow by the (mean) curvature. Such multi- scale evolutionary process is represented by a geometrical...

Gravimetric quasigeoid in Slovakia by the finite element method

The paper presents the solution to the geodetic boundary value problem by the finite element method in area of Slovak Republic. Generally, we have made two numerical experiments. In the first one, Neumann BC in the form of gravity disturbances generated from EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly from EGM-96. In the second one, Neumann BC is computed from gravity measurements and the solution is compared to the quasigeoidal heights obtained by...

4D Embryogenesis image analysis using PDE methods of image processing

In this paper, we introduce a set of methods for processing and analyzing long time series of 3D images representing embryo evolution. The images are obtained by in vivo scanning using a confocal microscope where one of the channels represents the cell nuclei and the other one the cell membranes. Our image processing chain consists of three steps: image filtering, object counting (center detection) and segmentation. The corresponding methods are based on numerical solution of nonlinear PDEs, namely...

Page 1

Download Results (CSV)