The three-parameter inverse Gaussian distribution is used as an alternative model for the three parameter lognormal, gamma and Weibull distributions for reliability problems. In this paper Bayes estimates of the parameters and reliability function of a three parameter inverse Gaussian distribution are obtained. Posterior variance estimates are compared with the variance of their maximum likelihood counterparts. Numerical examples are given.
Let be a square free integer and . In the present work we determine all the fields such that the -class group, , of is of type or .
Let be an odd square-free integer, any integer and . In this paper, we shall determine all the fields having an odd class number. Furthermore, using the cyclotomic -extensions of some number fields, we compute the rank of the -class group of whenever the prime divisors of are congruent to or .
Let be an imaginary bicyclic biquadratic number field, where is an odd negative square-free integer and its second Hilbert -class field. Denote by the Galois group of . The purpose of this note is to investigate the Hilbert -class field tower of and then deduce the structure of .
Let be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields , which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).
Download Results (CSV)