On some imaginary triquadratic number fields with or
Let be a square free integer and . In the present work we determine all the fields such that the -class group, , of is of type or .
Let be a square free integer and . In the present work we determine all the fields such that the -class group, , of is of type or .
Let be an odd square-free integer, any integer and . In this paper, we shall determine all the fields having an odd class number. Furthermore, using the cyclotomic -extensions of some number fields, we compute the rank of the -class group of whenever the prime divisors of are congruent to or .
Let be an imaginary bicyclic biquadratic number field, where is an odd negative square-free integer and its second Hilbert -class field. Denote by the Galois group of . The purpose of this note is to investigate the Hilbert -class field tower of and then deduce the structure of .
Let be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields , which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).
Page 1