The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Capitulation des 2 -classes d’idéaux de Q ( - p q ( 2 + 2 ) ) p q ± 5 mod 8

Abdelmalek AziziMohammed Talbi — 2009

Annales mathématiques Blaise Pascal

Soient K = Q ( - p q ( 2 + 2 ) ) p et q deux nombres premiers différents tels que p q ± 5 mod 8 , K 2 ( 1 ) le 2 -corps de classes de Hilbert de K , K 2 ( 2 ) le 2 -corps de classes de Hilbert de K 2 ( 1 ) et G le groupe de Galois de K 2 ( 2 ) / K . D’après [], la 2 -partie C 2 , K du groupe de classes de K est de type ( 2 , 2 ) , par suite K 2 ( 1 ) contient trois extensions F i / K  ; i = 1 , 2 , 3 . Dans ce papier, on s’interesse au problème de capitulation des 2 -classes d’idéaux de K dans F i ( i = 1 , 2 , 3 ) et à déterminer la structure de G .

Capitulation dans certaines extensions non ramifiées de corps quartiques cycliques

Abdelmalek AziziMohammed Talbi — 2008

Archivum Mathematicum

Let K = k ( - p ε l ) with k = ( l ) where l is a prime number such that l = 2 or l 5 m o d 8 , ε the fundamental unit of k , p a prime number such that p 1 m o d 4 and ( p l ) 4 = - 1 , K 2 ( 1 ) the Hilbert 2 -class field of K , K 2 ( 2 ) the Hilbert 2 -class field of K 2 ( 1 ) and G = Gal ( K 2 ( 2 ) / K ) the Galois group of K 2 ( 2 ) / K . According to E. Brown and C. J. Parry [7] and [8], C 2 , K , the Sylow 2 -subgroup of the ideal class group of K , is isomorphic to / 2 × / 2 , consequently K 2 ( 1 ) / K contains three extensions F i / K ( i = 1 , 2 , 3 ) and the tower of the Hilbert 2 -class field of K terminates at either K 2 ( 1 ) or K 2 ( 2 ) . In this work, we are...

Page 1

Download Results (CSV)