Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

On the zero-temperature or vanishing viscosity limit for certain Markov processes arising from Lagrangian dynamics

Nalini Anantharaman — 2004

Journal of the European Mathematical Society

We study the zero-temperature limit for Gibbs measures associated to Frenkel–Kontorova models on ( d ) / d . We prove that equilibrium states concentrate on configurations of minimal energy, and, in addition, must satisfy a variational principle involving metric entropy and Lyapunov exponents, a bit like in the Ruelle–Pesin inequality. Then we transpose the result to certain continuous-time stationary stochastic processes associated to the viscous Hamilton–Jacobi equation. As the viscosity vanishes, the...

Some decay properties for the damped wave equation on the torus

Nalini AnantharamanMatthieu Léautaud — 2012

Journées Équations aux dérivées partielles

This article is a proceedings version of the ongoing work [1], and has been the object of a talk of the second author during the Journées “Équations aux Dérivées Partielles” (Biarritz, 2012). We address the decay rates of the energy of the damped wave equation when the damping coefficient b does not satisfy the Geometric Control Condition (GCC). First, we give a link with the controllability of the associated Schrödinger equation. We...

Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold

Nalini AnantharamanStéphane Nonnenmacher — 2007

Annales de l’institut Fourier

We study the high-energy eigenfunctions of the Laplacian on a compact Riemannian manifold with Anosov geodesic flow. The localization of a semiclassical measure associated with a sequence of eigenfunctions is characterized by the Kolmogorov-Sinai entropy of this measure. We show that this entropy is necessarily bounded from below by a constant which, in the case of constant negative curvature, equals half the maximal entropy. In this sense, high-energy eigenfunctions are at least half-delocalized....

Semiclassical measures for the Schrödinger equation on the torus

Nalini AnantharamanFabricio Macià — 2014

Journal of the European Mathematical Society

In this article, the structure of semiclassical measures for solutions to the linear Schrödinger equation on the torus is analysed. We show that the disintegration of such a measure on every invariant lagrangian torus is absolutely continuous with respect to the Lebesgue measure. We obtain an expression of the Radon-Nikodym derivative in terms of the sequence of initial data and show that it satisfies an explicit propagation law. As a consequence, we also prove an observability inequality, saying...

Page 1

Download Results (CSV)