Entropy and localization of eigenfunctions

Nalini Anantharaman[1]

  • [1] CMLS, École Polytechnique, 91128 Palaiseau Cedex

Séminaire Équations aux dérivées partielles (2006-2007)

  • Volume: 2006-2007, page 1-17

How to cite

top

Anantharaman, Nalini. "Entropy and localization of eigenfunctions." Séminaire Équations aux dérivées partielles 2006-2007 (2006-2007): 1-17. <http://eudml.org/doc/11160>.

@article{Anantharaman2006-2007,
affiliation = {CMLS, École Polytechnique, 91128 Palaiseau Cedex},
author = {Anantharaman, Nalini},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {quantum chaos; semiclassical measure; ergodic theory; entropy; Anosov flows},
language = {eng},
pages = {1-17},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Entropy and localization of eigenfunctions},
url = {http://eudml.org/doc/11160},
volume = {2006-2007},
year = {2006-2007},
}

TY - JOUR
AU - Anantharaman, Nalini
TI - Entropy and localization of eigenfunctions
JO - Séminaire Équations aux dérivées partielles
PY - 2006-2007
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2006-2007
SP - 1
EP - 17
LA - eng
KW - quantum chaos; semiclassical measure; ergodic theory; entropy; Anosov flows
UR - http://eudml.org/doc/11160
ER -

References

top
  1. N. Anantharaman, Entropy and the localization of eigenfunctions, to appear in Ann. Math. Zbl1175.35036
  2. N. Anantharaman, S. Nonnenmacher, Entropy of semiclassical measures of the Walsh-quantized baker’s map, to appear in Ann. H. Poincaré. Zbl1109.81035
  3. N. Anantharaman, S. Nonnenmacher, Half–delocalization of eigenfunctions of the laplacian on an Anosov manifold,http://hal.archives-ouvertes.fr/hal-00104963 Zbl1145.81033
  4. M.V. Berry, Regular and irregular semiclassical wave functions, J.Phys. A 10, 2083–2091 (1977) Zbl0377.70014MR489542
  5. O. Bohigas, Random matrix theory and chaotic dynamics, in M.J. Giannoni, A. Voros and J. Zinn-Justin eds., Chaos et physique quantique, (École d’été des Houches, Session LII, 1989), North Holland, 1991 
  6. J. Bourgain, E. Lindenstrauss, Entropy of quantum limits, Comm. Math. Phys. 233, 153–171 (2003). Zbl1018.58019MR1957735
  7. A. Bouzouina and D. Robert: Uniform Semi-classical Estimates for the Propagation of Quantum Observables, Duke Math. J. 111, 223–252 (2002) Zbl1069.35061MR1882134
  8. Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Commun. Math. Phys. 102, 497–502 (1985) Zbl0592.58050MR818831
  9. A. Connes, H. Narnhofer, W. Thirring, Dynamical entropy of C * algebras and von Neumann algebras, Comm. Math. Phys. 112 no. 4, 691–719 (1987). Zbl0637.46073MR910587
  10. M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268. Cambridge University Press, Cambridge, 1999. Zbl0926.35002MR1735654
  11. L.C. Evans and M. Zworski, Lectures on semiclassical analysis (version 0.2), available at http://math.berkeley.edu/~zworski 
  12. F. Faure, S. Nonnenmacher and S. De Bièvre, Scarred eigenstates for quantum cat maps of minimal periods, Commun. Math. Phys. 239, 449–492 (2003). Zbl1033.81024MR2000926
  13. F. Faure and S. Nonnenmacher, On the maximal scarring for quantum cat map eigenstates, Commun. Math. Phys. 245, 201–214 (2004) Zbl1071.81044MR2036373
  14. A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its applications vol.54, Cambridge University Press, 1995. Zbl0878.58020MR1326374
  15. D. Kelmer, Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus, preprint (2005) math-ph/0510079 
  16. K. Kraus, Complementary observables and uncertainty relations, Phys. Rev. D 35, 3070–3075 (1987) MR897714
  17. P. Kurlberg and Z. Rudnick, Hecke theory and equidistribution for the quantization of linear maps of the torus, Duke Math. J. 103, 47–77 (2000) Zbl1013.81017MR1758239
  18. F. Ledrappier, L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2) 122 (1985), no. 3, 509–539. Zbl0605.58028
  19. E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Annals of Math. 163, 165-219 (2006) Zbl1104.22015MR2195133
  20. H. Maassen and J.B.M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60, 1103–1106 (1988) MR932170
  21. Z. Rudnick and P. Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Commun. Math. Phys. 161, 195–213 (1994) Zbl0836.58043MR1266075
  22. A. Schnirelman, Ergodic properties of eigenfunctions, Usp. Math. Nauk. 29, 181–182 (1974) MR402834
  23. J. Sjöstrand and M. Zworski, Asymptotic distribution of resonances for convex obstacles, Acta Math. 183, 191–253 (1999) Zbl0989.35099MR1738044
  24. A. Voros, Semiclassical ergodicity of quantum eigenstates in the Wigner representation, Lect. Notes Phys. 93, 326-333 (1979) in: Stochastic Behavior in Classical and Quantum Hamiltonian Systems, G. Casati, J. Ford, eds., Proceedings of the Volta Memorial Conference, Como, Italy, 1977, Springer, Berlin Zbl0404.70012MR550907
  25. S.A. Wolpert, The modulus of continuity for Γ 0 ( m ) / semi-classical limits, Commun. Math. Phys. 216, 313–323 (2001) Zbl1007.11028MR1814849
  26. S. Zelditch, Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55, 919–941 (1987) Zbl0643.58029MR916129

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.