The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Distances dans la suite des multiples d'un point du tore à deux dimensions

Nicolas Chevallier — 1996

Acta Arithmetica

Introduction. Soit θ un élément de ¹=ℝ/ℤ. Considérons la suite des multiples de θ, x = ( n θ ) n . Pour tout n ∈ ℕ, ordonnons les n+1 premiers termes de cette suite, 0 = y₀ ≤ y₁ ≤...≤ yₙ ≤ 1 = pθ, p=0,...,n. La suite (y₀,...,yₙ) découpe l’intervalle [0,1] en n+1 intervalles qui ont au plus trois longueurs distinctes, la plus grande de ces longueurs étant la somme des deux autres. Cette propriété a été conjecturé par Steinhaus, elle est étroitement liée au développement en fraction continue de θ. On peut aussi...

Page 1

Download Results (CSV)