The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Associated orders of certain extensions arising from Lubin-Tate formal groups

Nigel P. Byott — 1997

Journal de théorie des nombres de Bordeaux

Let k be a finite extension of p , let k 1 , respectively k 3 , be the division fields of level 1 , respectively 3 , arising from a Lubin-Tate formal group over k , and let Γ = Gal( k 3 / k 1 ). It is known that the valuation ring k 3 cannot be free over its associated order 𝔄 in K Γ unless k = p . We determine explicitly under the hypothesis that the absolute ramification index of k is sufficiently large.

Galois structure of ideals in wildly ramified abelian p -extensions of a p -adic field, and some applications

Nigel P. Byott — 1997

Journal de théorie des nombres de Bordeaux

Let K be a finite extension of p with ramification index e , and let L / K be a finite abelian p -extension with Galois group Γ and ramification index p n . We give a criterion in terms of the ramification numbers t i for a fractional ideal 𝔓 h of the valuation ring S of L not to be free over its associated order 𝔄 ( K Γ ; 𝔓 h ) . In particular, if t n - [ t n / p ] < p n - 1 e then the inverse different can be free over its associated order only when t i - 1 (mod p n ) for all i . We give three consequences of this. Firstly, if 𝔄 ( K Γ ; S ) is a Hopf order and S is 𝔄 ( K Γ ; S ) -Galois...

A valuation criterion for normal basis generators of Hopf-Galois extensions in characteristic p

Nigel P. Byott — 2011

Journal de Théorie des Nombres de Bordeaux

Let S / R be a finite extension of discrete valuation rings of characteristic p > 0 , and suppose that the corresponding extension L / K of fields of fractions is separable and is H -Galois for some K -Hopf algebra H . Let 𝔻 S / R be the different of S / R . We show that if S / R is totally ramified and its degree n is a power of p , then any element ρ of L with v L ( ρ ) - v L ( 𝔻 S / R ) - 1 ( mod n ) generates L as an H -module. This criterion is best possible. These results generalise to the Hopf-Galois situation recent work of G. G. Elder for Galois extensions.

Relative Galois module structure of integers of abelian fields

Nigel P. ByottGünter Lettl — 1996

Journal de théorie des nombres de Bordeaux

Let L / K be an extension of algebraic number fields, where L is abelian over . In this paper we give an explicit description of the associated order 𝒜 L / K of this extension when K is a cyclotomic field, and prove that o L , the ring of integers of L , is then isomorphic to 𝒜 L / K . This generalizes previous results of Leopoldt, Chan Lim and Bley. Furthermore we show that 𝒜 L / K is the maximal order if L / K is a cyclic and totally wildly ramified extension which is linearly disjoint to ( m ' ) / K , where m ' is the conductor of K .

New ramification breaks and additive Galois structure

Nigel P. ByottG. Griffith Elder — 2005

Journal de Théorie des Nombres de Bordeaux

Which invariants of a Galois p -extension of local number fields L / K (residue field of char p , and Galois group G ) determine the structure of the ideals in L as modules over the group ring p [ G ] , p the p -adic integers? We consider this question within the context of elementary abelian extensions, though we also briefly consider cyclic extensions. For elementary abelian groups G , we propose and study a new group (within the group ring 𝔽 q [ G ] where 𝔽 q is the residue field) and its resulting ramification filtrations....

Realizable Galois module classes over the group ring for non abelian extensions

Nigel P. ByottBouchaïb Sodaïgui — 2013

Annales de l’institut Fourier

Given an algebraic number field k and a finite group Γ , we write ( O k [ Γ ] ) for the subset of the locally free classgroup Cl ( O k [ Γ ] ) consisting of the classes of rings of integers O N in tame Galois extensions N / k with Gal ( N / k ) Γ . We determine ( O k [ Γ ] ) , and show it is a subgroup of Cl ( O k [ Γ ] ) by means of a description using a Stickelberger ideal and properties of some cyclic codes, when k contains a root of unity of prime order p and Γ = V C , where V is an elementary abelian group of order p r and C is a cyclic group of order m > 1 acting faithfully on...

Page 1

Download Results (CSV)