Study of some properties of ocean waves using random models.
Dans cet article on montre que toute a une décomposition avec pour les domaines pseudoconvexes à frontière réelle-analytique et aussi pour les domaines pseudoconvexes pour lesquels le résultat soit valable localement.
In this paper we give characterizations of those holomorphic functions in the unit disc in the complex plane that can be written as a quotient of functions in A(D), A(D) or Λ(D) with a nonvanishing denominator in D. As a consequence we prove that if f ∈ Λ(D) does not vanish in D, then there exists g ∈ Λ(D) which has the same zero set as f in Dbar and such that fg ∈ A(D).
Let D be a bounded strictly pseudoconvex domain of with smooth boundary. We consider the weighted mixed-norm spaces of holomorphic functions with norm . We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces and we give results about real and complex interpolation between them. We apply these results to prove that is the intersection of a Besov space with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm...
We study the boundedness in of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in with spectrum included in these horizontal strips.
Let D be a bounded strictly pseudoconvex domain of Cn with C ∞ boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D. In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space...
Page 1