Sur une propriété de la mesure généralisée des ensembles
Supposons qu'à tout systeme fini de nombres naturels n_1,n_2,…,n_k corresponde un ensemble E_{n_1,n_2,…,n_k}. Désignons par E l'ensemble de tous les éléments x, tels que pour chacun d'eux au moins une suite infinie d'indices n_1,n_2,n_3,… existe telle que x appartienne à chacun d'ensembles E_{n_1}, E_{n_1,n_2},E_{n_1,n_2,n_3},… On dit que l'ensemble E est le résultant d'une opération A, effectuée sur le systeme d'ensembles S={E_{n_1,n_2,…,n_k}}. Le but de cette note est de démontrer Théorème: L'opération...
Soit E un ensemble plan donné: on dit qu’un point p de E est linéairement accessible s’il existe un segment rectiligne pq tel que tous ses points (le point p excepte) soient étrangers à E. Désignons généralement par a(E) l’ensemble de tous les points linéairement accessibles d’un ensemble plan E donne. Il se pose le probleme d’étudier la nature des ensembles a(E) pour des classes d’ensembles E donnees. Le but de cette note est de démontrer une méthode qui permet de résoudre ce probleme pour plusieurs...
Le but de cette note est de démontrer qu'il existe un ensemble ouvert (dans l'espace à 3 dimensions), tel que l'ensemble - somme de toutes les droites (illimitées) qu'il contient entierement est non mesurable (B).
Page 1 Next