Domains of attraction of equilibria and monotonicity properties of convergent trajectories in parabolic systems admitting strong comparison principle.
We consider three types of semilinear second order PDEs on a cylindrical domain , where is a bounded domain in , . Among these, two are evolution problems of parabolic and hyperbolic types, in which the unbounded direction of is reserved for time , the third type is an elliptic equation with a singled out unbounded variable . We discuss the asymptotic behavior, as , of solutions which are defined and bounded on .
We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation . We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence of steady states and time-periodic solutions are also shown.
Page 1