Continuous Branches of Positive Solutions for a Class of Nonlinear Second-Order Differential Equations.
Let , be complete separable metric spaces. Denote by (X) the space of probability measures on X, by the p-Wasserstein metric with some p ∈ [1,∞), and by the space of probability measures on X with finite Wasserstein distance from any point measure. Let , , be a Borel map such that f is a contraction from into . Let ν₁,ν₂ be probability measures on Ω with finite. On X we consider the subordinated measures . Then . As an application we show that the solution measures to the partial...
Maximal regularity (in -sense) for abstract Cauchy problems of order one and boundary value problems of order two is studied. In general, regularity of the first problems implies regularity of the second ones; the converse is shown to hold if the underlying Banach space has the UMD property. A stronger notion of regularity, introduced by Sobolevskii, plays an important role in the proofs.
Regularity of stochastic convolutions corresponding to a Volterra equation, perturbed by a white noise, is studied. Under suitable assumptions, hölderianity of the corresponding trajectories is proved.
A simplified stochastic Hookean dumbbells model arising from viscoelastic flows is considered, the convective terms being disregarded. A finite element discretization in space is proposed. Existence of the numerical solution is proved for small data, so as error estimates, using an implicit function theorem and regularity results obtained in [Bonito (2006) 381–398] for the solution of the continuous problem. error estimates are also derived. Numerical results with small time...
Page 1