Behaviour of solutions to as p → +∞
If φ: [0,∞) → [0,∞) is a convex function with φ(0) = 0 and conjugate function φ*, the inequality is shown to hold true for every ε ∈ (0,∞) if and only if φ* satisfies the Δ₂-condition.
The existence of a one-parameter family of stationary solutions to a fragmentation equation with size diffusion is established. The proof combines a fixed point argument and compactness techniques.
We define a mapping which with each function and an admissible value of associates the function with a prescribed initial condition which minimizes the total variation in the -neighborhood of in each subinterval of . We show that this mapping is non-expansive with respect to , and , and coincides with the so-called play operator if is a regulated function.
Bounded weak solutions to a particular class of degenerate parabolic cross-diffusion systems are shown to coincide with the unique strong solution determined by the same initial condition on the maximal existence interval of the latter. The proof relies on an estimate established for a relative entropy associated to the system.
A stochastic system of particles is considered in which the sizes of the particles increase by successive binary mergers with the constraint that each coagulation event involves a particle with minimal size. Convergence of a suitably renormalized version of this process to a deterministic hydrodynamical limit is shown and the time evolution of the minimal size is studied for both deterministic and stochastic models.
In this paper we consider a model of chemorepulsion. We prove global existence and uniqueness of smooth classical solutions in space dimension n = 2. For n = 3,4 we prove the global existence of weak solutions. The convergence to steady states is shown in all cases.
Page 1