For a given induced hereditary property 𝓟, a 𝓟-coloring of a graph G is an assignment of one color to each vertex such that the subgraphs induced by each of the color classes have property 𝓟. We consider the effectiveness of on-line 𝓟-coloring algorithms and give the generalizations and extensions of selected results known for on-line proper coloring algorithms. We prove a linear lower bound for the performance guarantee function of any stingy on-line 𝓟-coloring algorithm. In the class of generalized...
We prove that for any two minor hereditary properties 𝓟₁ and 𝓟₂, such that 𝓟₂ covers 𝓟₁, and for any graph G ∈ 𝓟₂ there is a 𝓟₁-bipartition of G. Some remarks on minimal reducible bounds are also included.
A linear forest is a forest in which every component is a path. It is known that the set of vertices V(G) of any outerplanar graph G can be partitioned into two disjoint subsets V₁,V₂ such that induced subgraphs ⟨V₁⟩ and ⟨V₂⟩ are linear forests (we say G has an (LF, LF)-partition). In this paper, we present an extension of the above result to the class of planar graphs with a given number of internal vertices (i.e., vertices that do not belong to the external face at a certain fixed embedding of...
A parity path in a vertex colouring of a graph is a path along which each colour is used an even number of times. Let χₚ(G) be the least number of colours in a proper vertex colouring of G having no parity path. It is proved that for any graph G we have the following tight bounds χ(G) ≤ χₚ(G) ≤ |V(G)|-α(G)+1, where χ(G) and α(G) are the chromatic number and the independence number of G, respectively. The bounds are improved for trees. Namely, if T is a tree with diameter diam(T) and radius rad(T),...
A graph is a if for any vertex the subgraph induced by the neighbours of is a -tree, , where -tree is an edgeless graph, -tree is a tree. We characterize the minimum-size locally -trees with vertices. The minimum-size connected locally -trees are simply -trees. For , we construct locally -trees which are maximal with respect to the spanning subgraph relation. Consequently, the number of edges in an -vertex locally -tree graph is between and , where both bounds are asymptotically...
Download Results (CSV)